LLM

· Paper Review
(EMNLP 2023) SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language ModelsarXiv: https://arxiv.org/abs/2303.08896code: https://github.com/potsawee/selfcheckgpt 1. ProblemHallucination Detection기존의 fact verification 방법은 ChatGPT와 같은 블랙박스 모델에서는 작동하지 않을 수 있으므로 외부 리소스 없이도 Hallucination을 Detection 할 수 있는 새로운 접근 방식이 필요함 2. Related Worksintrinsic uncertainty metrics ..
· Paper Review
(ICLR 2023 notable-top-25%) Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language GenerationarXiv: https://arxiv.org/abs/2302.09664code: https://github.com/lorenzkuhn/semantic_uncertainty 1. MotivationLLM이 생성한 답변의 uncertainty를 추정하는 것은 Trustworthy LLM과 관련하여 중요한 문제임그러나 답변의 uncertainty를 추정하는 기존의 token-likelihood 기반 방법들은 semantic equivalence 문제를 고려하지 않음 semantic..
· Paper Review
Publication Info: TACL 2024arXiv: https://arxiv.org/abs/2307.03172code: https://nelsonliu.me/papers/lost-in-the-middle심리학에는 서열 위치 효과(serial-position effect)라는 용어가 있다. 사람들은 어떠한 나열들을 기억할 때 처음과 끝의 내용들은 잘 기억하지만, 중간에 있는 내용들은 쉽게 기억하지 못하는 경향의 현상을 의미하는 용어이다.  갑자기 웬 심리학인가 할수도 있지만, Lost in the Middle 논문은 이러한 서열 위치 효과 현상이 LLM에서도 발생하는지 실험적으로 분석했다. (저자들이 서열 위치 효과를 직접적으로 논문의 motivation으로 꼽은건 아니지만, 저자들도 이 효과에 ..
· Paper Review
arXiv : https://arxiv.org/abs/2310.14696code : https://github.com/gankim/tree-of-clarifications1. Introduction & Related WorkOpen-domain question answering (ODQA) task에서 사용자들은 종종 ambiguous questions (AQs)를 질문할 때가 있는데, 이러한 AQs는 여러 뜻으로 해석 될 수 있는 문제점이 있음 AQs를 다루기 위한 3가지 관련 연구Min et al., AmbigQA: Answering Ambiguous Open-domain Questions, EMNLP 2020providing individual answers to disambiguated quest..
· Etc./Books
본인은 대학원에서 LLM 및 RAG를 연구중인 대학원생이다. 산업계에서는 RAG를 다양한 라이브러리와 함께 응용하는 engineering의 느낌이 강하겠지만, 평소 본인은 RAG를 research 레벨로 접한터라, RAG를 langchain 같은 라이브러리를 사용하여 구현하지는 못했다. (연구나 실험 단계에선 langchain을 사용하기보단, pytorch로 밑바닥부터 구현하기 때문이다.) 그러던 중 RAG 관련한 여러 유튜브 영상을 보다보니, RAG를 응용하여 서비스를 개발하는 것에도 관심을 갖게 되었고, 이 책을 접했다.  이 책은 langchain을 메인으로 사용하여 RAG 서비스를 개발하는 법을 소개하는 책이다. langchain 이외에도 간단한 AI 기반 웹 서비스 제작을 돕는 streamlit..
· Paper Review
(NAACL 2024) Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question ComplexityarXiv : https://arxiv.org/abs/2403.14403code : https://github.com/starsuzi/Adaptive-RAG1. Introduction논문이 다루는 taskOpen-Domain Question-Answering task with RAG (Retrieval-Augmented Generator)Single-hop QA: 한 문서만 필요한 질문에 답하는 것Multi-hop QA: 질문과 함께 거대한 지식 말뭉치(corpus)가 주어졌을 때 답을 찾기 위해 말뭉치..
· Paper Review
(ICLR 2024) NEFTune: Noisy Embeddings Improve Instruction FinetuningarXiv : https://arxiv.org/abs/2310.05914code : https://github.com/neelsjain/NEFTune/tree/main 세 줄 요약NEFTune은 학습 과정에서 임베딩 벡터에 Uniform Random Noise를 더해주는 행위를 말한다.NEFTune을 통해 모델은 학습 데이터셋에 대한 오버피팅이 감소한다. (모델이 일반성을 갖게 됨)오버피팅 감소의 부작용으로, NEFTune을 사용하면 결과의 verbosity가 증가하게 된다.1. Introduction논문이 다루는 taskLLM Instruction fine-tuning 기법해당 ta..
· NLP
2023년 12월에 열린 Devfest Cloud 2023에 참가하여,Google ML Tech Lead인 Erwin Huizenga님께서 발표하셨던How to do supervised tuning for a language model using Vertex AI 세션을 듣고 정리한 글입니다."How to do supervised tuning for a language model using Vertex AI" 관련 시리즈(1) Why Adapter Tuning?(2) Supervised Fine Tuning(3) RLHF (Reinforcement Learning from Human Feedback)0. RLHF 관련 논문[NeurIPS 2017] Deep Reinforcement Learning fro..
· NLP
2023년 12월에 열린 Devfest Cloud 2023에 참가하여,Google ML Tech Lead인 Erwin Huizenga님께서 발표하셨던How to do supervised tuning for a language model using Vertex AI 세션을 듣고 정리한 글입니다."How to do supervised tuning for a language model using Vertex AI" 관련 시리즈(1) Why Adapter Tuning?(2) Supervised Fine Tuning(3) RLHF (Reinforcement Learning from Human Feedback)1. 프롬프트 디자인의 한계 (Limitations of Prompt Design)프롬프트의 단어나 단어 ..
oneonlee
'LLM' 태그의 글 목록